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ABSTRACT

The analysis and design of a submarine propuIaor requires the ability to pre-

dict the characteris_.ics of both laminar and turbulent flows to a high degree

of accuracy. Thi.'_ report preser_ts rcsult,: of certain beTl.ch_r_ark computaiior_s

based on an. upwind, hi qh-resolution: fini_e-differe.ncing Navier-Stokes solver.

The purpose of the computations is to evatuate the ability, the accuracy and

thc performance of f:he solver in the simrHation of de.tailed fea_u_'es of viscous

flows. Features of interest include flow separatioT_ and reatt_.chment, sur-

face pro:sure and skin friction distribuL_ons. Th_se_ features .,r_ particularly

relevc_nt to the propulsor analysis. Test cases wiih a u,fi,_, rqnge of Reynolds

numbers are selected; _herefore, th_ effects of the con',ec'.':: _ and the diffusive

terms of the solver can be evaluated _epcz__tety. Test. cases i,v.d,_de flows over

bluff bodice, such as circular cylinders a.nd spheres, at various low Reynolds

numbers, flows over a flat plate with and without tarbulence effects, ar,d

t.uT"bulent flows over azis$,mmetric bodies with and without prop_d.sor effecl.s.

Finally, to enhance tl_e iterative solution p_'oced_lre, a full approximation

scl_eme V.cycie rnultigrid method is implemented. Preliminary results indi-

caie thal the method significan_dy reduces the computational effort.

ADMINISTR.AT1-VE INFORMATION

]'his investigal, ion wa.,; authorized by the Office of Naval Resez_rd_ under 6.2 Vi:_cous

Flow Prograrn, in accordance with Program Elem.enl 62323N, Ta.sk Area l%2_32M,q3,

nnd Work Request Number N00:t495WX20047/AJ. This work was performed at the

Nav_l Surface Warfe.rc. Center, Cardevock Division (NSWCCD), David Taylor Model
Bazln (DTMB) under Work Unit 5060-567.

INTROI)UCTION

Hydrodynamicldly speaking, propulsor components are lifting bodies that provide

thrust for propulsion. To improve the propulsive performance, it is desirable to hnv_;

lift:trig body with an optimuna lift to drng r_tio. Successful anldy,fis _nd design requires

th,_ nbility to predict the hydrodynamic forces on the lifting body, such as lift and drag.

to a high degree of accuracy. Recently, large research efforts on computational fltlid

dynamics (CF'D) have been directed to achieve such goals. The mosl. practical approach

is to derive some num,eric_l methods for the Rcynold.,1-averged Navier-Stokes equations

(It.AN$). The more popular methods, depending on the manner the convective t er,ns

are fi_rmuiaied, include the central differencing a_d the upwind differencing schemes.

Both up,rind (DTN.q Code _) and centra.l (]FLOW Code _) differencing formulations ha.re

been used for hydrodynamics simulations at the l)avid Taylor Model B_in (D']'MIg).

A:_ part of DTMB propulsor research efforts, _ variation of the upwind schemes has

been employed to simulate the tlow thrm_gh the blade rows of a turbomachinerv _' 4



ForhighReyuo]dsmm_berflows,the Navier-Stokes equations become .:onvectively
dominated _md are hyperbolic in nature. Under such circumstances, the upwind differ-

encing approach becomes attractive and has _.ertain advantages. For a one-.dimensional

case, it can be shown that the information at any point propagates in the direction

_ccording to the sign of _;he local eigenvalues of the flux Jacobia.n. Consequently, a

numerica.l p_ocedure with the upwind differencing technique based on the direction of

local w_ve propaga, tion is physically more adaptive to the characteristics of the equa-

tions. Besides: in the upwind ,;theme, the dispersive and dissip_tive errors are more

closely balanced tha_a i1_other schemes of equal or even higher order that use the same

set of nodal points, regardless of the direction of the couveclion s. The flux-differencing

,_plitting approach suggested by Roe _ is a popular upwind scheme for solving the in-

compressible Navier..S;oke_ equations, since it doe_ not require the invis;cid flux to be a

homogenou,; function of order one. Based on Roe's _wproach Gthe flu×-difference is :;plit

according, to an approximate solution of the Riem,:.nn problern. The solution provides

the iItformation a.bout the direction of lhe wave propagation, which, iu turn. is ir_cof

poratcd into the discretized sy,'_tem to form a_ upwind scheme. Thc accuracy of the

solution can bc promoted to a hJghcr order by reconstructing the primitive variables or

the fluxes midway between two node_'; with atb ext, r_q_olat]on technique. In conjunction

with the reconstruction process; the slope ]imiter or the flux limiter can be implemented

to obtain total variation diminishing (TVD) property 7. Viscous terms can be discretized

with a. second order centred differencing scheme. A nurnerical formulation, ba:_ed oil the

prblciples described above, a,llows the discont]nt_i_y of the solution to be resolved ore.

only t,wo adjacent nodes without causing the non-phyeical oscillations. Therefore, this

approach is sometimes cMled high reso]ution.

This report: presents the resulk,, of a numerical study designed to evahlate the ability

and accuracy of _m upwind scheme in predicting certain :flow features thai, are relevant

to propulso:r analysis. Some of |,he fe_dures of interest are flow :separation and rcattach-

merit: surface pressnre arid skin fr'iction distribution. Test cases for present numerical

study are selected so that. (1) a wide range of Reynolds numher._ are covered, (2) the
boundaries are. smooth al_d the; distortion:; of the grid syst_-ms are minimized, (3) the

flow features are relevant to the proplusor analysis and (4) the test data are well ana-

lyzed. ']-est cases include :flows over bluff bodies, such as circular c.yllnders and spheres,

at various low Reynolds numbers., flows over a fiat plate with and without turbulence

effect_, and turb_dent flows ow_r .'_xisymmetric bodie.,; with and without, propu.lsor ef-

fects. To enhance the iterat_ve solution procedure, a full approximation scheme. (FAS)

V-cycle multigrid method is implemcnted. A _ast convergence rate is achieved as a
result.



THE GOVERNING EQUATIONS

Thethree-dimensionalincompressibleRANS equations based on primitive variables

are+ formulated iu a boundary-fitted curviline_r coordinate system. Using Chorin's arti-

ficial compressibility formulation, s the inco,npressible Navier-Stokes equation is written

in con,servation form for three-dimensional flow ira Cartesian syst.em as

Q, + (E" - E;)_ + (F" - F:)_ + (G" - a;)_ --=0 (_)

In Eq. 1, the dependent variable vecto_ Q is defined as Q =: (p, u, v, u,) T, and the inviscid

flux vectors E', F', and G+, the viscous shear flux vectors E_,F_, and G_, arc given by

E" = (3u,u 2 +p,uv:uw) 7

F" = (flv,uv, v: + p, vw) r

G" =: (8_;:uw, vw, w2 + p)r

E; =: Re"'(O,2u_,u_ + v,:,u_ + w_) T

F_ = Re,-_(0, u_ + v_,20_,v_ ÷ wS

G', = Re'-;(O,u, + w=,,,, + w_,2w+) T.

The coordinates x.. y, z are scaled with an appropriate characterisbic length scale L. The

Cat'_e,;ian velocity components u, v, w are nondimensionalized with respect to the free

stream velocity, V_.. The normalized pressure is defined as p = (p - p_.)/pV_. The

kinematic viscosit:y, v, is assumed to be constant, and the Reynolds number is defined _,s

Re = V_¢L/v. The artificial (:ompressibility parameter,/3, monitors the error associated

with the addition o.r the unsleady pressure term Op/Ot in t.he continuity equation. The

unsteady pressme term is needed for coupling ehe mass and momentum equations to

make the system hyperbolic.

Equation 1 can be transferred to a curvilinear, body-fitted coordinate system ((, ( ,

) through a coordinate transforrnai,ion of the form

_= _+(_:,+,,+), + = +(.::,+,,,_), and ,_=,p(._+y,.+).

Thus, Eq. 1 becomes:

(Q/J), + (E--E_)¢ + (F - F.)_ + (G -- G'.), = 0 (2)

with

(E,F,G) T= {IT 1 (E'/J,F'/J ,G'/,I) r}

and

(E_, F+,6'J = IT] (I,:;/J+ C/J, 6+',+,/J)r



where

_'. (_ it]
IT]-- (_ (v (_

_n.d the Ja.cobian of the coordinale tre_nsfor, nat.io,l is given by

,I-_ = det
[ x( y< z( ]
x( y( z( ..

The Jacobian is the ratio of volume elements in the two coordinate system,;. For a proper

transformation, neither J nor its reciprocal is zero. At present, the trar_sfi)rmation is

chosen ,';o tha_ the grid spac.ing in the computational domain is uniform and of one uifit

in length in all three spatial directions. The Cartesian derivatives of the shear fluxes are

obtained by expanding them using chain rule expansions in the ¢, (, and 7; directions.

NUMERICAL DISCRETIZATION

Let i, j, k denote the integer ind_ces of a grid poi_t in the curvilinear system (, (,,r I

whose Cartesian coordi.ates are z: y, z. Each grid point serw;s _dso az the centrold

of a control volume whose .'fix bounding surfaces are formed by bisecting the distances

between the centroid and it_ six adjacent grid points. The Cartesian flow variable'_ s,ch

as u, v,w and p _.re pl_.ced at each. grid point. The indiccs of the grid point are, u,_ed

as subscripts for the variables to i.ndicate the association. To avoid "introducing any free

stream error, the mel,rlc terms such a.s i_, _ and rt= etc.. arc computed from x.y,z

data by using _ second-order central-differencing _pproximation of x(, x4 ;_nd x,_ etc.,

as described by Pulli&m and Steger ').

INVISCID FLUXES

AI, present, discretization of the inviscld fluxes of Eq. 2 is achieved by applying

the Riemann solver to each direction of the coordinate system a._ suggested by Yee,

Warming and Hart,en 1°. Consi.der a one-dimen.qionM hyperbolic sy,;t,em of conservative
l&WS

(9 0,, ,3t, + ,,0(q) = 0, n(Q) = Y0'

where 0 = (, ( or _1, _nd D(Q) is the Jacobian Me_trix. Both Q and H(Q) aro column

ve.ctois with four components and D(Q) -;s a four by four matrix.

Let the right cigenvector,q be thc column elements of rnalrix R and eigenvalues

Aj, 12. A3 and ),4 be the diagonal elements of m_,trix A, then the relationship between

D,R and h is given by a similarity transb_rmation D = RAR -1, The row elements



of thematrix R -_ give an orthonormal set of Lhe left eigenvectors. In tile discretized

system, lhc state Q: at grid point l is considered as an averaged value in an interval,
that is

Roe's flu× difference splitting is constructed by forming a mean value .lacobian /)(Ql+l, Qt)
slJch th_tt

and

H(@._)- H(QI) = D(Q_+),@) (Qz+_-@),

D(@+l_Ql) = D(Qt+l,@) as Qz+, -_ Ql .

(,o evMua!e the' mean value (the local frozen value ) Jacobian al the interface l-t: ._, the
simple average value of the state Q a.t two adjacent grid points are used, _,ha.! is

Di__:_= Dl±½(Oz:_}) (5)

wh(?re

By the similarity transformation, Dr+_ can be written as

Dr+½ = (RAR..1)I+_

= (RA+t_ -')_+½ -- (RA-t_'-')_+_

where A+ and A- ate _;he absolute values of the positive (speed of the right travelling

wave) an.d the negative (speed of the left travelling wave) eigenvalues, respectively.

With the mean value Jacobian locally defined, Eq. 3 can be decoupled into a system of

four scalar equ _tion,_ with the eigenvalues representing the wave speeds of the Riemann

problem. Let',, define the local characteristic variables W as the projection of Q into

the left eigenvectors R -1 ; therefore , W = R-IQ. For any given two _tates Q: and

Q:+I, the flux at the interface HI+ _ can be expressed, in term of flux difference, as eltber

tt++½= H: .÷ RA+'At+_ W (6)

OY

H_+_ = Ht+_ - BA+ AI+_ W , (7)



where Al+ ½W = (14:/+1 - Wt)/2 .

Assuming that R, B -1 and A are constant, with Eqs 6 and 7, Eq. 3 can be written as

a system of four scalar hyperbolic conservative equations for the characteristic variables
IV , that is,

- (),,,)t__Az_}g.,, = 0 for" ,, = 1,2.3,,t. (8)

An implicit delta form of Eq. 8 is

= (_,;)t+_A_,,l,l_ < + '". : -._ - ,_,,_)t-_Az-_14.. , (9)

where r is the time step size, n is l;he time step number, and _14",_ := l,t.;,_"_1 .- IVy.

When W _ is snfficienth, differentiablc, the local jump in ' ;" i,_ _ I_._ at the interfaces i :i= 5'
kllowll a_s

--_ - (10)

are replaced with

00 /a} A° (11)

Equation 10 is only a first-.order one-sided approximation of Eq. 11. To enhance _,ho

accuracy, the ffrllowing relationships from. a scalar scheme can be extended to a constant

coefficient, system by applying them scMar]y to each of the m scalar characteristic

components in Eq. 8,

attd

( wo--_,-/l_.A0= 14%- ,,,,___y

.- +,_,,)A_+._w_ + (1 - _)(+;., - +;,__, )&_ }w:_] ,(]2)

( )/+++AO = W_,,m - W,_,tOo

-_ [(1+ ,o)(+7,,.,- _+,,_, )_x,__g_ + (1- _)(_,.,+, .-+,+.,)_,+_. l,t.:]

for m=1,2.3,4, with

+{.,= ¢(%) ,

,(i3;



mnn •

and

r± (At__ ,,,/zaa+{H'_',) m for .Ar,]H'" _ 0

,,d : 0 for Ah_{W_' ' = 0 (15)

The order of the Accuracy in the spatial derivat.iw,s presented Above is determined by the

values of w. For c,_= -1, the scheme is fully upwind second-order accurate. For _o = i_:
the scheme is upwind biased third-order accurate. Function _P is called the limiter; it

is used to control unwanted oscill;rtions in numerical schemes. Various designs, of the
limiter were found and successfully t(;sted, z. _

Substitute Eqa. 12 and 13 into Eq. 9, and multiply Eq. 9 by the set of right eigen-

vectors R front the left. A conservative high-resolution scheme for the nonlinear system
is derived:

)

with

-. 0 + A ,_l_.,.
. J =

Q'_-- (RK+IR -''v_ A "q"' 11_1 I..t__/ (16)

t + (1 - m7:)/4

and

The right hand side of the Eq. ].6 is evaluated at time level n; it is the spatial

dcrivaliw." of Eq. 2, and is designated as residual, t'_quation 16 represents the relalionship
hetwc(;n _;he re,_idual at n_ time step and lhe correction of the solutions at n.+ l _h time

step. The correction And the residual approach to zero as the solutions approach to
their stea.dy state values.

V I,_C()US FLUX ES

The viscous fluxes in Eq. 2 are evaluted by a second-order central differencing

scheme. The computation of the fluxes require all nine metric coefficients at each

of the six bounding :surfaces of each computational cell.

SOLUTION ALGORITHM

Equation 16 can be extended to three-dimensional applications with the operator

split mcthod, The difl'erencing scheme,_ described previously are. applied t() each co-

ordinat.e direction (, (, and r/ independently; a summation over all direction,s gives

l,he discre.t, ized approximalion of a multi-dimenslonA1 flow problem. Upon forming the
3acobian matrice:_ A: B, and C from invicid fluxes E, F, and G and X, Y. and



Z from t,he viscous fluxes E_., F_,

equations c_n then be written as:

(;

and G_, , a finite-differencing form of Navler-SIokes

(A-+ X),+_{÷½+ (A+ + X),_}S{__

- (B- + Y)j+_j÷{ + (B+ + V),_½a,__

" -RS_(q _ . (zT)- (6'- + Z)_+_+_ + (C- + Z)___2x___ AQ_ = ¢'-"'

Equation 17 is ,{olved by an im_,!i¢it hybrid algorithm where a symmetric planar

Ga.uss-Seidel relaxation is used. in. the ( direction and approximation factorizalbn is

applied in the ( and rI directions:

M - (_- + Y)j+_,_ + (B+ + g)___j_._AC)= - {_s(0. (is)

M- (C:-+ Z)_+}A_.+} + (C _ + Z)__½Ak_}]A Q = M,'iQ , (19)

Q"+' = 0" + _xO_ , (e0)

with M = I/(rJ)+ (A--t-X)i_t + (A4+ X), a, where RES(Q':,Q "+') indicates the
• 2 --7'

nonlinear updating of the residual while sweeping in the ( direction.

MULTIG RID METHOD

For cert;ain simulagions, in order to obtain meaningful results, a large number of

finely sized grid pointsi,; needed.. The adverse effect of such a grid system upon the

computation effort is that the rate of convergence deteriorates signific an_ly. The analy,;is

provided by Bra.ndt 12 suggest,; that. the low-frequency components of the errors are

efficiently approximated on coarse grids but are slow to convergence on fine grids.

In addition, the high-.frequency components must be approximo.ted on fine grids. By

utilizing interactively several scales of discret.ization, multigrid techniques resolve such

conflicts and avoid stalling.

To accommodate nonlit_earities, a full approximate scheme (FAS) is used. The

di,,.erctized system of cquatlem; described previously can be represented as:

L(O) : -r{, (2_)

when; L is the differencing operator, O is the unknown to be sobe, d and 17 is the

re:;idual, The iterative process 'will reduce the residuaJ to zero a,s the steady-state

solution is approached. 'The FAS procedures for solving Eq. 21 can be described as
follows:

(1) relax on (,he fit,.e grid, l,h(Q h) = -R h ,



(2) solveL2h(Q _') .+ [i_h[Lh(Q_)]- L:;,(I_Q h) = -R :h on the coarse grid, a,d

(3) replace Qh Q_ + l_h(Q_. 2h"--- -- Ih Q ) 0_1 the fine grid.

The notatioIl introduced here includes the difference operators _t the fine grid /,h

and the coarse grid L_a , tt,e restriction operators l_ h (for th(_ approximation) and

I_ (for the residual), _md the interpolation operator l_h.

RESULTS

In the followings b_mchmark computations, in order to qualify the comparison be-

tween the experimental measurements and computational results, tool-mean-square

(RMS) differences 2 are calculated. The RMS difference is defined a_

N

where v_ and v TM are computed and meamlred values respectively, ,%" is the l,ota}

number of data ','alues used m the comparison., and the subscript i ranges from I to

N. Computations were carried out with 64-bit precisioI, on a Silicon Graphic.,; Power

Challenge machine.

TURBULENT FLOW ALONG A FLAT PLATE

The structure of the'. turbulent boundary layer along a flat plate has been inve,,;tigatcd

earlier by Ludweig and Tillmann ]3, and Wieghart and Tillmann t4. It w_Lsfound that

the axial velocity profile in the inner one-fifth of 'the boundary layer can bc represented

by the uMversal logarithmic law (e.xc]uding the viscous subla, yer). The remaining outer

four-fifths (:an be. adequatedly expressed by the power law. Wie, gh:_rt and Tillrnann's

dat.a were collecl;ed in a wind tunnel test. The flow velocily was 33 m/see and the
average dyJaarnic viscofity was 0.15] cvn2/sec. Velocity measurements were taken at

twenty-three locations ranging from 0.087 m to 4.987 m fi:om the ]ca.ding edge. The

boundary thickness grew from 0.(17_35cm to 0.9242 cm. The test data were compiled
_nd presented at a 1968 i_t_nford turbulent fl.ow conference is.

In the pre_,;eni compw;ation, the computational domain exter}ds 8 m in ,,;treamwise

direc'don, 0.16 m in cross flow direction, and 0.5 rn in the third direction; grid points

used are 57., 61 and 5 ir_ the respective directions. The Reynold:_ number (Re) is 2.2x10 s.

Grid distribution, in the cross-flow direction is non-uniform, and is clustered near the

pla.te such that the y-_ coordinate of the first grid point off the plate surface is less

than 0.3. The Coura_nt-Friedricbs-Lewy (CFL) number for present computations is

10z', For the turbulence modelling, the standard Baldwin and L_max's algebraic eddy

viscosity formulation IG i,; u:_ed. Figure la shows the skin fri(:1,i_m eoefi[icient C._ along

the pla|e surface, and Figs. lb and lc show the axial velocity profiles at ×=0.78 nt and

4.98 m, respectively. The RMS differez,ces indica.te that the deviations between the

nteasurements altd the predictions are within the limits of the expected measuremenl



uncertainties. Figaire 2 shows the velocity profile _t x=4.98 m presented in (y+, u +)

coordinates. It can be seen that the predictions agree well with the measm'er _ents. In

the turbulent zone where y+ lies between 30 and 1000, both the predictions and the

measurements fit the universal logarithmic taw. However, none of tile data lie within

tile sublayer. The convergence history present, ed in Fig. 3 shows that the residual value

approaches lhe nnachine zero.

0.005 [_"r_---r r,------_-

I Skin friclifm coefficient

0 004[_ o Wei_.harfs dam (1951)

• I_." Prc_sent computation

0.002 I

RMS difference = 0.13xl0 "_

X(m_

Fig. la. Skin friction coefficient,

O.10 ----.

0.08

0,_

Y(m)

0,_

Axi,"zlvelocity profile

x*0. 78 m

Corn pu ration

o Mea.¢urement

0 c_ t-'-_-_-_- ,'T---_Rz-_ ' -----1"D.0 0.2 0. l 0.6 0.8 1.0 1.2

Fig. lb.Velocity profile at x=0.78 m.

l Axial velocity profile

0.08[ x,=4.98 m

0.05 [- Computation

Y(m) o Measurement

0.04 i_i_j_0.02 RMS difference

00CIt-"-'='_--='='-.... _-t..=_
""0.1 0.2 0.4 0.6 0.8 1.0 1,2

u IU_

Fig. lc, Velocity profile at x=4.98 m.

Fig. 1. Skin friction coefficient and velocity profile

for turbulent flow alonl3 a flat plate.
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_,-10
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FiL-'. 3. Convea gence historie._ for computing

turbulent, flow along a flat plate.

LAMINAR FLOW ALONG A FLAT PLATE

For steady laminar flow alon_ a flat pla.te w_th a. constzmt free stream velocity
Uo , (he pre:ssure gradient Op/Oz _n streamwise direction va.ni.,;hes. The Navier-Stokes

equations reduce to the Prandtl boundary-layer equa4ious. A s_lut]on, known as the

Bla.sius solution ufter its originator, is obtained by assunaing similar profiies a!ong the
plate at every location along the plate. B]asius assumed that

_=F'
U °

where y is t,he distance above the plate surface: _ is the boundary layer thickness, and

g .t/

-,7,

with z the distance from leading edge and R_ ),he Reynolds number based on x. Ullder

tl)e similarity assltmption, the Prandtl boundary layer equations c_n be furlher reduced

1o an ordinary differential equa(ion. Solution c_n then b(: obtained numerically. In the

present numerical simulation, (,he geor>etrical dimension used previously for turbuleut

flow i,; adopt, ed and the Reynold:; number is 3.64x10 s. The grid .<_ize is 129x129×3.

Figure 4a show._ the skin fri(:),iou (_oefIicient along t,l,e, plate surface, and Figs. 4b and

4c show (,he profiles of axiM velocity u/Uo , and tratlsverse velocity w/Uo , respec(,ively.

T]w R.MS diffe.rencc for each quantit, y is also presented. The results of the present

II
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Fig. 4¢. Transverse' velocity profile.

Fig. 4, Skin friction coefficient and velocity profiles

for laminar flow along a flat plate.

computation agree well with the solutions obtained by Blasius's method. Part of the
deviation can be attributed to the fact that the Blasius's solution is based on Prandtl

boundary la,ycr equations while the current computation is based on Navier-Stokes

equvJ, ions. Figure 5 shows l.he convergence histories for solutions wil,h multigrl(l (7

_evels) and without multigrid (1 level) application. Considerabh' compul,ing effort is

saved _'ith the application of the multigrid method.
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Fig. 5. Convergence histories for computing

laminar flow along a flat p_ate.

FLOW PAST CIRCULAR CYI,INDERS AT LOW SPEBDS

For" flow past a ci.rculz_r,cylinder at l_.eyno]ds numbers (length scale is based on the

diameter) below the critical value ( --_40) at which a K£rm£n street i.s fi_rmed, the flow

_s steady and twin vortices exist behind the cylinder. There are rnany interesting flow

related phenomena despite the simplicity of the geometry involved. The phenomena

are the boundary layer development along curved surfa.ce, the flow separation, and

wake re_Cctachment. However, the detail,; of these phenomena, such a.s (.he locations of

the separation, the coordinates of the vortex _nter, and the. wake's length and sh_xpe,
are Reynolds nurabcrs dependent _nd pose greed, challenges for numerical simulation.

For these and other reasons, this problem has drawn much attention in the past. both

theoretically and experimentally. In light of the availability and quality of _he data,

this problem is selected as a bertchmark case for present numerical study.

The. outer boundary of the computational domain ;q described by a circle with a

radius 10 times that of the cylind.er. Au O-type and ortb0gona] grid system is se-
lected. The grid distribution in the radial direction is non-uniform and is clustered

near the surface. The distance bet, ween the cylinder surface and the first grid point is

one-thousandth of the radius of the cylinder, For computation, symmetry is assumed

and only the plane above the axis of symmetry is considered. The number eft grid

points in radial, circumferential and axial directions are 257, 257 and 3, respectively.

The CFL number used for the following computations is l02. The boundary conditions

are: (1) a non-siip , non-penetratlng, and vanishing normal pressure gradient on solid

surf_ce, (2) prescribed free stream value.,; at the upstream side of the outer boundary,

(3) second-orde.r extrapolations at the downstream side of the outer boundary and (4)

periodicity in the spanw_se direction. In order to descril)e the main features of the flew,

13
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Fig. 6. Gcomeu'ical parameters of the closed wake.

Coutanceau and Bouard's 17 geometrical pararneJers for the closed wake are adopt, ed

and ,;hown in Fig. 6, where parameters I and L are the width and length of the wake, 0s

is the separation angle and the. vertex certters are located on the (a',y) axes by o. a.nd

b . It was observed by :l'aneda TM that the twin w_rtice.,; behind the cylinder appeared

when the Reynolds number was greater than 6 and became unstable when the Reynolds

numbcr was greater than. 45. Therefore, the Reynolds numbers 5 and 40 arc selected as

the lower ,rod upper bound:; for the present steady-state computations. ]:aneda_s is a.nd

Coutanceau rand Bouard's iv flow visualizalions were obtained by similar methods: by

illuminating t,hc light particles suspended uniformly in the liquid and by photographing

in the direction normal to the lighted plane. 'I'aneda is used aluminium and water in

the tests, while Coutanccau a.nd Bouard a7 used fine bright particles and the Vascline

oil ' MAR.COL 80 ' in their tests. The latter reference derived the particle velocity

by mcasuring the length of the particle trajectory during the time of exposure. The

repotted inaccuracy was less than 2%. The wall influence was investigaled by chang-

ing t,he ratio 3, between the cylinder and the t_nk diameters _. Figure 7 shows _he

computed wa,ke .qhapes behind the cylinder at. differc.nt Reynolds numbers. Compared

with the ttow visualization,,_ 17' is the characteristics of the wake shapes near the sepa-

ra.tion and reattachment points are well simulated. The result indicates that the twin

vortices begin to develop a.t Reynolds number about 5 and it agrees with Taneda's Is

observation. In Fig. 8: l,he cu.rrc_tly comput, ed separation angles at various Reynolds

numbers are compared with those compufaed earlier by l(eller 1°' zo and tbtal :_l and those

measured by Coutanceau and Bouard, 3r Figure 9 shows the relationship bel, weel_ the

Reynolds numbers Re and the, wake leog,_hs L/D, from both the current computations

14
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Fig. 8. Separation tangles at different Re)anolds

numbers for flow past a ci.rcular cylinder.

Fig. 9. Wake lengths at different Reynolds

numbers for flow past a circular cylinder.

and Tancda's obsel'vatioxas. Is In Fig. 10, the coordinates of the vortex center (a, t_) (see

Fig. 6) are p.lotted against the Reynolds number, Re. The experimental data were re-

ported by Coutanee_u _nd Bou_rd _r with A , the ratio between the cylinder and the

tank diameters, equal to 0.1)24. The ,_mall v_luc of A .indicates th.a| the wall effect is

relatively smMl. Figure 11 shows the sirnil,arit:y of the clo_ed-wake shape, lr For com-

puted and measured wakes at different R eyn(_kls numbers, when the wake width I and

its disLance from t,he re_r .,_tagna_;ion point X - R, are normalized with the maximun

wake width l,_=0: and wake len.gth L, respectively, and then plotted against each other,

the result,; merge into a singk', curve excc;pt at the regions near the cylinder wall. Fig-

ure 12 shows the velocity similarity on the rear flow ax_s in the closed wake, where the

w_locity u is normalized with its maximum value u,_,_. Figure 13 shows the compar-

ison.,_ of the computed and measured 'velocitie,; at re.at flow axis at Reynolds numbers

20 and 40. The RMS differences are comparable wi_h the measurement uncertainty

(-,_ 2%). Fig_re. 14 sho_h's the computed pressure distribution at the cylinder surface

for Re=4(l' it is compared with the distributions observed at Re=36 and Re=45 by

ThoJ.-n, 22 and computed by Apelt 23 at Re=40. Thom's approximate theory _4 for deter-

mining the vah_e of the pressure at the front stagnation point at low speed gives the

rc'_sult, at R.eynolds number 40, (l+7/Re) or 1.175, which agrees well with the value: of

the current, result 1.18. Figure 15 presents the convergence histories of the numerical

sim_lation at Re=40. q?he 7-level multigrid solver improves the efficiency signifi_:antly.

A fine grid size is needed for de;ailed computation, because wilh su¢:h a line grid :_ize

the convergenc¢: is slow. The application of multigrid technique (7 levels) reduces the:

computat]on,_l effort c_r_siderably for a given CPU t.irne,
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FLOW PAST SPHERES AT LOW SPEEDS

Tl_e flow and the solutions are assumed |o be axisymmetric. The topology of the

grid and t;he specificabion of the boundary conditions are the same as those used for

com nul, ing the flow over tile cylinder presented earlier, except thai the reflective con-

dition is applied in the circumferential direction. The solutions on different meridionai

planes are related by simple coordinate transforlaation. The CFL number used for the

computations is 10 2. Figure 16 shows the compul.ed wake shapes behind the sphere at

various Reynolds rmmbers. The relationship between the R.eynolds number Re and the
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Fig. k6. Standing vortices downsheam of a sphere.
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wakelengthL is plotted in Fig. 17; also included are the test data from Taneda. 2_

The twin vortices be, hind the sphere appear at Reynolds number about 25. The surface

pressure distribution al Reynolds number 100 is shown in Fig. 18; al,;o included are. the

results from earlier computations. 2_' 27 The convergence histories for Re=100 is shown

in Fig. 19. Multigrid technique improves the computationM efficiency significant, ly.
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Fig. 17. Wake lengths at different Reynolds

numbers for flow past a sphere.
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TURBULENTFLOWPASTAXISYMMBTRICBODIES

Thepurposeof +.hiscomput_tlonis to invest,igatcthe accuracyof the numerical
schemein predictin.gthe characteristicsof the flow in anexpandingboundarylayer
under'adversepressuregradient8t highReynoldsnumbers.Axisymmetricbodies,des-
ignatedasDTMB-bodylandI)TMB-body2,werebuilt andtestedat theD_.vidTaylor
ModelBasin(DTMB) 2s. The Reynolds number at the te_t condit, ion was 6__ixl06. The

size of the C-type grid for the present computation is 197x3x146 in radial, circumfer-

ential and axial directions, respectiv, ely. Modified Baldwin-Lomax modeF is used to

simula, tc the turbu!en' flow. Figure 20 shows the computed (solid line) and measured

(symbol) pressure distributions on surface of DTMB-bodyl. The RMS diffe:rence is

0.019. The measurement uncertainty for pressure v,'a_s 4-0.015. It can be seen that

the pressure gradient is zero at the parallel mid-body region, and adverse gradient is

present at stern region. In Fig. 21 the computed velocity profiles at, various axial loca-

tions at stern region of DTMB..bodyl are cornp,_red with the measurments. The ['{MS

differences range from 0.012 to 0.025. The mcazurem, ,t uncertainly for velocity was

+0.025. In Fig. 22 the velocity profiles, at the v_rallel mid-body section, awe plotted in

the (y+,u ÷) coordinates. The vMue of the y+ of the grid nearest to the body surface

is about 2.5. There are four grid points that lie within lhe laminar sublaver. The

computed distribution of skin friction (solid line) on body ,_m face i,,; shown in Fig. 23.
Compared with the measurements, the RMS difference is (}.00029. The measu.remem

un('_er_,_inty for skin friction was .-t:0.0002. The- compui, ed (solid line) _ud measured

(symbol) turbulence shear strmse:_ near the stern regi.on at several axial localion.,: are

shown ira Fig. 24; the RMS differences range from 0.008 to 0.015. The measurement

uncerl_,inly for turbulent shear stresses is :_0.01.

0.4[ ... _.

Re=--6.6x1()_

RMS dilference=0.019

0.2 Present comp. ,I
i

o Expt. O-lumlg et al. 1978) _
/

c,

0.4 0.6 0.8 1.0
xtL

Fig, 20. Surface pressure distribution

for DTMB-bodyl.
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Fig.21. Velocity profiles at stern region of DTMB-hodyl.
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Fig. 22. Co:mparisons of wall law at mid-body section of DTMB-.bodyl.
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Fig. 2& Turbulent shear stresses near the stem region of D'lMB-body 1,

24



A propellerwasplacedonDTMB-bodvlwhosecente;lineis locatedat x/1,,=0.983.
The ratio of propeller and body diameter is 0.54. Velocity me_tsurenaents were taken

at a distance of 0.227 propeller diameter upslream of the propeller, For numerica]

prediction, the propeller effect was simulated with a body force model. The computed

and measured velocity profiles under two different propeller operating conditiolts are
shown in Fig. 25.

profilesTheatSamedifferenttypeof computations were carried out on DTMB-body2. The velocity
axial location., are shown in Fig. 26. The RMS differences bet,ween

the computed and measured values range from 0.008 to 0.058.

Re.=5.9x 10"_
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Fig. 25b. Advance ratio=l.07.

Fig. 25. Velocity, profiles upstream of an operating propeller

at differenl, advance ratios.
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Fig.. 26. Velocity profiles at stern region of DTMB-body2.
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CONCLUSIONS AND RECOMMENDATIONS

An upwind, high-resolution, finite-differencing Navier-Stokes solver is used to sire-

:date steady-state incompressible flows with a wide range of Reynolds numbers:. JLx-

perimenis with measurement,; of high quality arc selected as benchmark cases. The

predictions are compared with the measurements by evahmting the tool mean ._;quare
(RM$) differences, in _dl cases, the RMS differences are compatible with the mea-

surement uncertainties. For the low Reynolds number cases, the detailed features of

¢l_e standing vortices behind the bluff bodies are successfully simulated. For the high
Rey_.olds number cases, the :_kin fric|ion coefficients: the structure of the turbulent

velocity profiles and the turbulent shear stresses are correctly predicted.

At low Reynolds numbers, the flows are dominated by diffusive process. The rate of

convergence of the iterative procedure become,; w._rv slow, even for aa implicit method

with a rather high CFL number. The situations can be improved significantly by

implementing the multigrid technique. Compared with the single-grid approach, the

multigrid ,_olver is rather insensitive to the CFL numbers at_d an orde_ of magraitude of
Central Proo_sor Unit (CPU) time is saved.

In summary_ the flow features _hat are relevant to the propuisor analysis, such as
flow separation and reattachment, ,_urt'ace pressure and skin friction dstributions, can

be, predicted aCCUrately and efficient;ly wi_h an upwind RANS solver. The formulaiions

of D'TNS 1 are similar to the formulations described in this reoort. It is expected that
D']-NS 1 code may aclfievc the similar pertbrmaces. For eomp]i'cated turbulent flows, lo

correctly predict the turbulent structure.,., a sophisticated n(m-equilibrium turbulence
model i._needed.
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